1461

Communications to the Editor

## SYNTHESIS OF AZEPINOMYCIN AND ITS $\beta$ -d-RIBOFURANOSIDE

Sir:

Azepinomycin<sup>1)</sup> (1), which was isolated from the culture filtrate of *Streptomyces* sp. MF718-03, has strong inhibitory activity against guanine deaminase (EC 3.4.5.4.3) and its structure was determined by X-ray crystallographic analysis to be 4,5,6,7-tetrahydro-6-hydroxy-3*H*-imidazo-[4,5-e][1,4]diazepin-8-one. Recently, the unusual nucleosides, coformycin<sup>2)</sup>, isocoformycin<sup>3)</sup> and pentostatin<sup>4)</sup>, which have the diazepine structure in their aglycone were studied as a codrugs for use in combination with 9- $\beta$ -D-arabinofuranosyladenine<sup>5)</sup> in the treatment of cancer.

We wish to report two syntheses of azepinomycin (1) and its  $\beta$ -D-ribofuranosyl derivative (5) (Fig. 1) from 5-amino-1-(2,3,5-tri-O-acetyl- $\beta$ -D-ribofuranosyl)imidazole-4-carboxamide (2). We first applied the synthetic route used for wyosine<sup>6)</sup>, as follows (Fig. 2). 5-Amino-4cyano-1-(2,3,5-tri-O-acetyl-β-D-ribofuranosyl)imidazole (3), which was prepared from 2 by reaction with phosphorus oxychloride and triethylamine (0°C, 2 hours, yield 85%), was treated with 2,2-diethoxyacetaldehyde<sup>7)</sup> to give the corresponding SCHIFF's base, followed successively by reduction with sodium borohydride in THF (0°C to room temp) and acetylation with acetic anhydride and pyridine to afford 2,2-diethoxyethylamino derivative (4) in 31% yield, oil:  $[\alpha]_{D}^{25}$  -16.3° (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.22 (6H, t, J=7.0 Hz, OCH<sub>2</sub>CH<sub>3</sub>×2), 2.15 (9H, s, OCOC $H_3 \times 3$ ), 3.45~3.90 (6H, m, NCH<sub>2</sub>CH, OCH<sub>2</sub>CH<sub>3</sub> $\times$ 2), 4.25~4.50 (3H, m, 4'-H, 5'-H<sub>2</sub>), 4.70 (1H, t, J=5.0 Hz, EtOCH), 4.90 (1H, t, J=6.0 Hz, NH), 5.32 (1H, t, J=

5.0 Hz, 3'-H), 5.48 (1H, t, J=5.0 Hz, 2'-H), 5.61 (1H, d, J=5.0 Hz, 1'-H), 7.22 (1H, s, 2-H); IR  $\nu_{\text{max}}^{\text{CHCl}_{3}}$  cm<sup>-1</sup> 2220 (nitrile), 1750 (ester); UV  $\lambda_{\max}^{CHCl_s}$  nm ( $\varepsilon$ ) 250 (11,660); field desorption mass spectra (FD-MS) m/z 482 (M<sup>+</sup>). Compound 4 was hydrolyzed with 20% ag tetraethylammonium hydroxide (90°C, 4 hours), and then with 10% aq AcOH (60°C, 2 hours) to give 3-( $\beta$ -D-ribofuranosyl)azepinomycin (5) in 30% yield: 1H NMR ( $D_2O_1$ , external standard TMS)  $\delta 3.61$  (1H, d, J=14.0 Hz, 5- $H \cdot H$ ), 4.20 (1H, dd, J=14.0and 5.4 Hz, 5-H·H),  $4.25 \sim 4.35$  (2H, m, 5'-H<sub>2</sub>), 4.60~4.90 (2H, m, 3'-H, 4'-H), 4.95~5.15 (1H, m, 2'-H), 5.60 (1H, d, J=5.4 Hz, 6-H), 6.05~ 6.20 (1H, m, 1'-H), 8.23 (1H, s, 2-H); IR UMBAR V MAX cm<sup>-1</sup> 1620 (amide); UV  $\lambda_{\text{max}}^{\text{H}_{3}\text{O}}$  nm ( $\varepsilon$ ) 279 (8,250), 203 (12,600); secondary ion mass spectra (SI-MS) m/z 301 (M<sup>+</sup>+1). Deglycosidation of the compound 5 with 5% aq phosphoric acid at

Fig. 1. Structure of azepinomycin and its  $\beta$ -D-ribofuranoside.







Table 1. Comparison of Rf value and inhibitory activity against guanine deaminase of azepinomycin and its  $\beta$ -D-ribofuranoside.

|                                      | Azepinomycin         |                      |                      |
|--------------------------------------|----------------------|----------------------|----------------------|
|                                      | Natural              | Synthetic            | Riboside (5)         |
| Rf* EtOH - $H_2O$ - $Me_2CO$ (5:2:2) | 0.40                 | 0.40                 | 0.18                 |
| BuOH - MeOH - $H_2O(4:1:2)$          | 0.21                 | 0.21                 | 0.05                 |
| IC <sub>50</sub> (M)                 | 4.9×10 <sup>-6</sup> | 4.9×10 <sup>-6</sup> | $1.2 \times 10^{-5}$ |

Merck Silica gel plate Art 5715.

Scheme 1.



DIBAL: Diisobutylaluminum hydride.

95°C gave azepinomycin (1) in 60% yield; mp  $230 \sim 235$ °C (dec). The inhibitory activity of 5 was found to be less than that of azepinomycin (1) (Table 1).

Alternatively, we accomplished the straightforward synthesis of 1 through N-alkylation of the 5-amino group in 2 (Scheme 1). Because of the low reactivity of this amino group, reaction of several alkyl halides (bromoacetal, iodoacetal, phenyl bromoacetate etc.) with bases (Et<sub>3</sub>N,  $Pr_{2}NEt$ , dimethylamino pyridine,  $Ag_{2}O$ ) resulted in recovery or decomposition of the starting material. The reaction of 2, however with ethyl iodoacetate and silver oxide in dimethylformamide gave the ethoxycarbonylmethylamino derivative (6) in 25% yield, oil:  $[\alpha]_{P}^{25} - 29.3^{\circ}$  (c 1.0, CHCl<sub>3</sub>); <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$  1.26 (3H, t, J=7.1 Hz, OCH<sub>2</sub>CH<sub>3</sub>), 2.08, 2.10 and 2.13 (each 3H, s, OCOCH<sub>3</sub>), 4.12 (2H, d, J=6.7 Hz, NHC $H_2$ ), 4.22 (2H, q, J=7.1 Hz,  $OCH_{2}CH_{3}$ ), 4.30~4.50 (3H, m, 4'-H, 5'-H<sub>2</sub>), 5.42 (1H, dd, J=5.7 and 4.0 Hz, 3'-H), 5.52 (1H, t, J=6.7 Hz, NHCH<sub>2</sub>), 5.63 (1H, t, J=5.7 Hz, 2'-H), 5.90 (1H, d, J=5.7 Hz, 1'-H), 5.30~6.10 (1H, br, CONH·H), 6.10~7.20 (1H, br, CONH· *H*), 7.38 (1H, s, 2-H); IR  $\nu_{max}^{CHCl_{a}}$  cm<sup>-1</sup> 1745 (ester), 1660 (amide); UV  $\lambda_{max}^{CHCl_3}$  nm ( $\varepsilon$ ) 255 (6,370); electron impact mass spectra (EI-MS) m/z 470 (M<sup>+</sup>), 259 and 212. Reduction of 6 with diisobutylaluminum hydride (6.0 equiv) in THF  $(-70^{\circ}C, 1 \text{ hour})$  gave 3-(2,3-di-O-acetyl- $\beta$ -D-ribofuranosyl)azepinomycin (7) in 39% yield:  $[\alpha]_{\rm D}^{20}$  $-39.2^{\circ}$  (c 0.5, H<sub>2</sub>O); <sup>1</sup>H NMR (D<sub>2</sub>O, external standard TMS)  $\delta$  2.58 and 2.66 (each 3H, s, OCOCH<sub>3</sub>), 3.66 (1H, d, J=14.4 Hz, 5-H·H), 4.25  $(1H, dd, J=14.4 and 4.8 Hz, 5-H \cdot H), 4.30 \sim 4.45$  $(2H, m, 5'-H_2), 4.80 \sim 5.00 (1H, m, 4'-H), 5.63$  (1H, d, J=4.8 Hz, 6-H), 5.90~6.10 (1H, m, 3'-H), 6.17 (1H, t, J=6.0 Hz, 2'-H), 6.40~6.60 (1H, m, 1'-H), 8.15~8.30 (1H, br, 2-H); IR  $\nu_{\text{max}}^{\text{KBr}}$  cm<sup>-1</sup> 1750 (ester), 1625 (amide); UV  $\lambda_{\text{max}}^{\text{H}_{10}}$  nm ( $\varepsilon$ ) 278 (9,100), 202 (14,300). Alkaline hydrolysis (1% aq ammonia, 1 hour) of compound 7 afforded 5 in a quantitative yield.

The synthetic azepinomycin was shown to be identical with the natural antibiotic by comparison of their UV, IR and NMR spectra, and inhibitory activity against guanine deaminase.

> Kunio Isshiki Yoshikazu Takahashi Hironobu Iinuma Hiroshi Naganawa Yoji Umezawa Tomio Takeuchi Hamao Umezawa

Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141, Japan

> Susumu Nishimura Nobuko Okada

National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104, Japan

## KUNIAKI TATSUTA

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223, Japan

(Received May 13, 1987)

## References

- UMEZAWA, H.; T. TAKEUCHI, H. IINUMA, M. HAMADA & S. NISHIMURA (IMC): Physicologically active agent azepinomycin. Jpn. Pat. 159494('83), Mar. 17, 1983
- NAKAMURA, H.; G. KOYAMA, Y. IITAKA, M. OHNO, N. YAGISAWA, S. KONDO, K. MAEDA & H. UMEZAWA: Structure of coformycin, an unusual nucleoside of microbial origin. J. Am. Chem. Soc. 96: 4327~4328, 1974
- SHIMAZAKI, N.; S. KONDO, K. MAEDA, M. OHNO & H. UMEZAWA: Synthesis of isocoformycin, an adenosine deaminase inhibitor of synthetic origin. J. Antibiotics 32: 537~538, 1979
- 4) Woo, P. W. K.; H. W. DION, S. M. LANGE, L. F. DAHL & L. J. DURHAM: A novel ad-

enosine and ara-A deaminase inhibitor, (**R**)-3-(deoxy- $\beta$ -D-erythro-pentofuranosyl)-3,6,7,8tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol. J. Heterocycl. Chem. 11: 641 ~ 643, 1974

- CASS, C. E. & T. H. AU-YEUNG: Enhancement of 9-β-D-arabinofuranosyladenine cytotoxicity to mouse leukemia L1210 *in vitro* by 2'-deoxycoformycin. Cancer Res. 36: 1486~1491, 1976
- NAKATSUKA, S.; T. OHGI & T. GOTO: Synthesis of wyosine (nucleoside Yt), a strongly fluorescent nucleoside found in *Torulopsis utilis* tRNA<sup>phe</sup>, and 3-methylguanosine. Tetrahedron Lett. 29: 2579~2582, 1978
- STETTER, H. & K. H. MOHRMANN: Additionen von Aldehyden an aktivierte Doppelbindungen; XXVI. Herstellung und Reaktionen von 1,1diethoxy-2,5-dioxoalkanen. Synthesis-1981: 129~130, 1981